Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system

نویسندگان

  • Hua Wang
  • Jun Liu
  • Shan Tao
  • Guihong Chai
  • Jianwei Wang
  • Fu-Qiang Hu
  • Hong Yuan
چکیده

PURPOSE Nanoparticles (NPs) that target bone tissue were developed using poly(lactic-co-glycolic acid) (PLGA) copolymers and tetracycline (TC)-based bone-targeting moieties. These NPs are expected to enable the transport of drugs, such as simvastatin (SIM), for the treatment of osteoporosis. METHODS The molecular structures of TC-PLGA were validated by (1)H-NMR, and the SIM-loaded NPs were prepared using the solvent emulsification method. The surface properties, cytotoxicity, cellular uptake, cell mineralization, bone targeting potential, and animal pharmacodynamics of the TC-PLGA NPs were evaluated and compared to those of PLGA NPs. RESULTS It was confirmed that the average particle size of the NPs was approximately 220 nm. In phosphate-buffered saline (PBS, pH 7.4), the SIM-loaded NPs exhibited a cumulative release of up to 80% within 72 hours. An in vitro cell evaluation indicated that the NPs had an excellent cellular uptake capacity and showed great biocompatibility with MC3T3-E1 cells, thereby reducing the cytotoxic effects of SIM. The cell mineralization assay showed that the SIM-loaded NPs induced osteogenic differentiation and mineralized nodule formation in MC3T3-E1 cells, thereby achieving the same effect as SIM. Preliminary findings from in vitro and in vivo bone affinity assays indicated that the TC-PLGA NPs may display increased bone-targeting efficiency compared to PLGA NPs lacking a TC moiety. The use of SIM-loaded TC-PLGA NPs in treating osteoporosis was tested through animal pharmacodynamics analyses performed in ovariectomized rats, and the results suggested that the SIM-loaded TC-PLGA NPs can improve the curative effects of SIM on the recovery of bone mineral density compared to either SIM-loaded PLGA NPs or SIM alone. CONCLUSION Bone-targeting NPs, which were based on the conjugation of TC to PLGA copolymers, have the ability to target bone. These NPs may be developed as a delivery system for hydrophobic drugs, and they are expected to improve the curative effects of drugs, reduce the administered drug doses, and reduce side effects in other organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PLGA-based macrophage-mediated drug targeting for the treatment of visceral leishmaniasis

The potential of PLGA-nanoparticles as a carrier of amphotericin B and doxorubicin against visceral leishmaniasis was evaluated by macrophage-mediated drug targeting approach. PLGA-nanoparticles were modified by coating them with macrophage-specific ligand-lectin. Prior to in-vitro studies, characterization studies were carried out systematically include particle size, surface morphology, perce...

متن کامل

Controlled-release of tetracycline and lovastatin by poly(d,l-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs

Chronic periodontitis is characterized by inflammation of periodontal tissues, leading to bone resorption and tooth loss. The goal of treatment is to regenerate periodontal tissues including bone and cementum lost as a consequence of disease. The local delivery of tetracycline was proven to be effective in controlling localized periodontal infection without apparent side effects. Previous studi...

متن کامل

Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide-co-glycolide) nanoparticles.

Lactoferrin (Lf) and folic acid (FA) were crosslinked on poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) for transporting etoposide across the blood-brain barrier (BBB) and treating human brain malignant glioblastoma. Lf- and FA-grafted PLGA NPs (Lf/FA/PLGA NPs) were employed to permeate the monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes an...

متن کامل

Quantum chemical study of Interaction of PLGA polymeric nanoparticles as drug delivery with anti-cancer agents of thiazoline

Thiazoles derivatives are consisted in chemical compounds such as antimicrobial and anticancer medicine. Since polylactic-co-glycolic acid (PLGA) polymeric nanoparticles has been conversed about nanomedicine applications and particularly as drug delivery systems. Because of molecular self-assemblies and biodegradability of PLGA polymer, it can be used to carry anti-cancer and antimicrobial drug...

متن کامل

Fabrication and in vitro evaluation of Ketotifen Fumarate-loaded PLGA nanoparticles as a sustained delivery system

Abstract Ketotifen fumarate is a non-bronchodilator anti-asthmatic drug which inhibits the effects of certain endogenous substances known to be inflammatory mediators, and thereby exerts antiallergic activity. The present study describes the formulation of a sustained release nanoparticle (NP) drug delivery system containing ketotifen, using poly (D,L lactide-co-glycolide acid) (PLGA). Biodegra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015